This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Some Cyclization Reactions with 2-Ethoxycarbonylmethylidene-4,5-Dihydro-4-Thiazolinone

Y. A. Ammar^a; Y. A. Mohamed^a; G. A. M. El-Hagali^a; A. S. Abd El-Aal^a; M. S. A. El-Gaby^b
^a Al-Azhar University, Nasr City, Cairo, Egypt ^b Al-Azhar University at Assuit, Assuit, Egypt

Online publication date: 03 July 2010

To cite this Article Ammar, Y. A. , Mohamed, Y. A. , El-Hagali, G. A. M. , El-Aal, A. S. Abd and El-Gaby, M. S. A. (2010) 'Some Cyclization Reactions with 2-Ethoxycarbonylmethylidene-4,5-Dihydro-4-Thiazolinone', Phosphorus, Sulfur, and Silicon and the Related Elements, 185: 7, 1386 - 1394

To link to this Article: DOI: 10.1080/10426500903061509 URL: http://dx.doi.org/10.1080/10426500903061509

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 185:1386-1394, 2010

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online DOI: 10.1080/10426500903061509

SOME CYCLIZATION REACTIONS WITH 2-ETHOXYCARBONYLMETHYLIDENE-4,5-DIHYDRO-4-THIAZOLINONE

Y. A. Ammar, Y. A. Mohamed, G. A. M. El-Hagali, A. S. Abd El-Aal, and M. S. A. El-Gaby²

¹Al-Azhar University, Nasr City, Cairo, Egypt ²Al-Azhar University at Assuit, Assuit, Egypt

2-Ethoxycarbonylmethylidine-4,5-dihydro-4-thiazolinone (1) was condensed with bis aromatic aldehydes such as terephthalaldehyde or 4,4'-bisformyl-diphenylether (2a,b) (2:1 molar ratio) and furnished bis-4-thiaozlidinones (3a,b). The reaction of (3a,b) with malononitrile and aromatic aldehydes (1:2:2 molar ratio) gave bis thiazolopyridines (4a–d). Bis-(thiazolopyridine) derivative (6) was obtained by reaction of 4-thiaozlinone (5c) with bis aldehyde (2b) in refluxing ethanol containing piperidine. Cyclization of 4-thiazolinones (5a,b) with different α-cyanocinnamonitriles gave thiazolo[3,2-a]pyridines (7a–d). Compound 9 was produced via the reaction of 8 with thioglycolic acid, which reacted with p-chlorobenzaldehyde to produce 10. Compound 10 was condensed with hydrazine hydrate and afforded 11. Compounds 12 and 16a,b were produced by the reaction of 9 with isatin and α-ethoxycarbonylcinnamonitriles, respectively.

Keywords Bisthiazolidinone; bisthiazolo[3,2-a]pyridine derivatives; 4-thiazolidinone

INTRODUCTION

Some thiazolo[3,2-a]pyridines have been reported to possess various biological activities including antibacterial, anticancer, antihypertensive, antidilator, and funigicidal activities. ^{1–8} A considerable number of bis heterocyclic compounds exhibited various biological activities including antibacterial, fungicidal, tuberculostatic, and plant growth regulative properties. ^{9–12} It has also been reported that bis heterocyclic compounds display much better antibacterial activity than heterocyclic compounds. ¹³ We report in this article the synthesis of some novel 4-thiazolidinone and bis thiazolo[3,2-a] pyridine derivatives. ^{14–20}

RESULTS AND DISCUSSION

It has been found that 4-thiazolinone (1) reacts with bis aromatic aldehydes (2a,b) in refluxing ethanol to yield bis-4-thiazolinones (3a,b). The structure of compounds 3a,b was confirmed by spectroscopic data.

The ¹H NMR spectrum of **3a** showed signals at δ 1.11 (t, 6H, 2CH₃), 3.77 (q, 4H, 2CH₂), 5.23 (s, 2H, 2CH-methylidene), 6.90–7.49 (m, 6H, Ar—H + 2 benzylidene-H)

Received 15 February 2009; accepted 21 May 2009.

Address correspondence to G. A. M. El-Hagali, Al-Azhar University, Nasr City, Cairo, Egypt. E-mail: Elhag1970@yahoo.com

and 10.32, 10.40 (2s, 2H, 2NH). Ternary condensation of bis 4-thiazolinone (3a,b), aromatic aldehydes, and malononitrile (1:2:2 molar ratio) afforded bisthiazolo pyridines (4a-d). The structure of compounds 4a-d was in agreement with their spectral data. The IR spectrum of 4a showed the presence of absorption bands for amino at 3406, 3350 cm⁻¹ and cyano at 2190 cm⁻¹ functional groups, and its mass spectrum showed a molecular ion peak at m/z 849 (5.13%) and a base peak at m/z 55. 2-Ethoxycarbonylmethylidine-4,5dihydro-5-arylmethylidene-4-thiazolinones (5a-c) were produced via the condensation of 1 with aromatic aldehydes in refluxing ethanol containing catalytic amount of piperidine. On the basis of elemental analysis and spectral data, the structure of thiazolidinone derivatives 5a-c was confirmed. Mass spectrum of compound 5c (C₁₆H₁₈N₂O₃S) exhibited a molecular ion peak at m/z 318 (6.67%) with a base peak at m/z 177 (14.22%). Cyclization of 5a, b with different α -cyanocinnamonitriles gave thiazolopyridines 7a-d. 4,4'-Bis-(2,3,7-trihydro-3-oxo-5-amino-6-cyano-8-ethoxycarbonyl-7-aryl-1,3-thiazolo[3,2-a]pyridine-2-ylidenemethyl) diphenyl ether (6) was produced by the reaction of 5c, malononitrile, and bis aldehyde (2b) (2:2:1 molar ratio) in refluxing ethanol in the presence of a catalytic amount of piperidine (Scheme 1).

The IR spectrum of **6** revealed absorption bands for cyano and amino groups at 2188, 3468, and 3410 cm⁻¹. Its 1 H NMR spectrum in (DMSO- d_6) displayed a signals at δ 1.04, 1.22 (2t, 6H, 2CH₃-ester), 3.03, 3.11 (2s, 12H, 2N(CH₃)₂), 4.05, 4.99 (2q, 4H, 2CH₂-ester), 5.57, 5.62 (2s, 2H, 2 pyridine-H), 6.87, 7.87 (m, 20H, Ar—H+ benzylidene-H+ 2NH₂). The novel 4-thiazolinone (**9**) can not be obtained from the reaction of **1** with 4-chloroaniline under various conditions, thus compound **9** was produced from the reaction of thioglycolic acid with *N*-(4-chlorophenyl)-2-cyano-acetamide **8** in acetic acid under reflux conditions. Electrophiles such as *p*-chlorobenzaldehyde and isatin were condensed with **9** and gave 4-thiazolidinone derivatives (**10**, **12**). The mass spectrum of compound **10** (C₂₅H₁₅N₂Cl₃O₂S) showed a molecular ion peak at m/z 513.5 (7.7%), and a base peak was found in the spectrum at m/z 63. Also, the mass spectrum of compound **12**(C₁₉H₁₂N₃ClO₃S) displayed a molecular ion peak at m/z 397 (4.18%) and a base peak at m/z 127.

The reaction of thiazolidinone derivative **10** with hydrazine hydrate in refluxing ethanol afforded pyrazolo[3,4-d]thiazole derivative **11** (Scheme 2).

Elemental analysis and spectral data were in complete accordance with pyrazolo[3,4-d]thiazole derivative (11). Mass spectrum of compound 11(C₂₅H₁₆N₄Cl₃OS) exhibited a molecular ion peak at m/z 525 (0.7%) and a base peak was found at m/z 127.

Finally, treatment of thiazolidinone derivative **9** with α -ethoxycarbonylcinnamonitriles in dioxane in the presence of a catalytic amount of piperidine gave the corresponding thiazolo-[3,2-a]pyridine derivatives **16a,b** (Scheme 3). The other possible structures **13a,b**, **14a,b**, and **15a,b** were excluded on the basis of elemental analyses and spectral data. The IR spectrum of compound **16b** showed absorption bands at 3375, 3316, 2184, 1714, and 1650 cm⁻¹ due to imino, hydroxy, cyano, and carbonyl functional groups, respectively. Its 1 H NMR spectrum in (DMSO- d_6) displayed signals at δ 5.05 (s, 1H, pyridine-H), 7.26–7.71 (m, 13H, Ar—H + methylidene-H), 9.49 (s, 1H, NH), and 12.10 (br, 1H, OH).

EXPERIMENTAL

Melting points were recorded on a Fisher-Johns melting points apparatus and are uncorrected. IR spectra were recorded on a Shimadzu 470 spectrometer using KBr pellets.

¹H NMR spectra were recorded on a Varian Gemini spectrometer (200 MHz) using TMS as internal standard and mass spectra on a Jeol-JMS-600 mass spectrometer. Elemental

Scheme 1

analyses were obtained from the Microanalytical Data Unit at Cairo University. The physical and spectral data for the synthesized compounds are given in Tables I and II, respectively. Compound 1 was prepared according to the reported method.²¹

1,4-Bis(2-ethoxycarbonylmethylidene-4-oxo-4,5-dihydro-5-yl)benzene (3a), 4,4'-Bis(2-ethoxycarbonylmethylidene-4-oxo-4,5-dihydro-5-yl)diphenyl Ether (3a,b)

To a solution of **1** (0.02 mol) in absolute ethanol (40 mL) containing a catalytic amount of piperidine (0.5 mL), either a bisaldehyde **2a** (0.01 mol) or **2b** (0.01 mol) was

Scheme 2

added. The reaction mixture was heated under reflux for 6 h. The solid product formed was collected by filtration.

1,4-Bis(2,3,7-trihydro-3-oxo-5-amino-6-cyano-7-aryl-8-ethoxycarbonyl-1,3-thiazolo[3,2-a]pyridine-2-ylidenemethyl)-benzene (4a,b), 4,4'-Bis(2,3,7-trihydro-3-oxo-5-amino-6-cyano-7-aryl-8-ethoxycarbonyl-1,3-thiazolo [3,2-a]pyridine-2-ylidene-methyl)diphenyl Ether (4c,d)

To a solution of either 3a (0.01 mol) or 3b (0.01 mol) in absolute ethanol (40 mL) containing a catalytic amount of piperidine (0.5 mL), malononitrile (0.02 mol) was added. The reaction mixture was refluxed for 6 h. The solid product formed was collected by filtration.

4,4'-Bis(2,3,7-trihydro-3-oxo-5-amino-6-cyano-7-aryl-8-ethoxycarbonyl-1,3-thiazolo[3,2-a]pyridine-2-ylidene-methyl)-diphenyl Ether (6)

To a solution of $\mathbf{5c}$ (0.02 mol) in absolute ethanol (40 mL) containing a catalytic amount of piperidine (0.5 mL), malononitrile (0.02 mol) and $\mathbf{2b}$ (0.01 mol) were added. The reaction mixture was heated under reflux for 6h. The solid product formed was collected by filtration.

Ar
$$Ar^{1}$$
 $CO_{2}Et$ $ArHN$ Ar^{1} $CO_{2}Et$ $ArHN$ Ar^{1} Ar^{1}

Scheme 3

2-Ethoxycarbonylmethylidene-4-oxo-4,5-dihydro-5-arylmethylidene-1,3-thiazole (5a-c)

Equimolar amounts of 4-thiazolinone 1 (0.01 mol) and aromatic aldehydes (0.01 mol) in absolute ethanol (40 mL) containing a catalytic amount of piperidine (0.5 mL) were mixed together. The reaction mixture was heated under reflux for 3 h. The solid product formed was collected by filtration.

2-Arylmethylidene-2–2,3,7-trihydro-3-oxo-5-amino-6-cyano-7-aryl-8-ethoxycarbonyl-1,3-thiazolo[3,2-a]pyridine (7a–d)

Equimolar amounts of 4-thiazolinones **5a,b** (0.01 mol) and α -cyanocinnamonitrile derivatives (0.01 mol) in absolute ethanol (40 mL) containing catalytic amount of piperidine (0.5 mL) were refluxed for 4 h. The solid product formed was collected by filtration.

Table I Spectral data of the synthesized compounds

Compd. No.	IR (ν, cm^{-1})	1 H NMR (δ, ppm) (DMSO- d_{δ})
3a	3402 (NH), 2926 (CH-aliph.), 1702, 1688 (C=O thiazolinone, ester).	1.11 (t, 6H, 2CH ₃ -ester, J = 5 Hz), 3.77 (q, 4H, 2CH ₃ -ester, J = 4.4 Hz), 5.33 (s, 2H, 2-methylidene-H), 6.90 (d, 4H, 4r-H, 1-4.2 Hz), 7.00 (s, 2H, 2-methylidene-H), 10.32, 10.40 (2s, 2H, 2-methylidene-H), 6.90
3b	3402 (NH), 2980 (CH-aliph.), 1692 (C=O thiazol- inone, ester).	1.22 (t, 6H, 2CH ₃ -ester, J = 7 Hz), 4.15 (q, 4H, 2CH ₂ -ester, J = 6.8 Hz), 5.64 (s, 2H, 2CH-nethylidene), 7.22 (d, 4H, 4T-H + 1 - 8 H, 4Y), 7.35 (d, 4H, 4T-H + 1 - 8 H, 4Y),
4a	3406, 3350 (NH ₂), 2192 (C \equiv N), 1700, 1642 (C \equiv O).	(3, 41, 71, 71, 72, 72, 72, 73, 74, 74, 75, 75, 74, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75
4b	3422, 3370 (NH ₂), 2192 (C≡N), 1698, 1640 (C=O thiazolinone,	1.02, 1.22 (21, 6H, 2CH ₂ -ester, J = 5 Hz), 3.84, 4.02 (2s, 6H, 20CH ₃), 4.04, 4.12 (2q, 4H, 2CH ₂ -ester, J = 4.4
4	ester). 3404, 3294 (NH ₂), 2198 (C≡N), 1698, 1638 (C=O thiazolinone,	Hz), 5.6 (s, 2H, 2 pyridine-H), 7.17–7.80 (m, 18H, Ar $=$ H + 2NH ₂ + 2-benzylidene-H). 1.03, 1.06 (2t, 6H, 2CH ₂ -exter, $J = 7$ Hz), 4.01, 4.04 (2q, 4H, 2CH ₂ -exter, $J = 6.4$ Hz), 4.51 (s, 1H,
7	ester). 3416-3300 (NHz.) 2002 (C=N) 1722 1616 (C=O thiszolinome	pyridine-H), 7.09–7.96 (m, 18H, Ar—H + 2-methylidene-H), 9.92, 9.97 (2s, 4H, 2NH ₂).
₽	STIC, 5500 (1012), 2202 (C=17), 1722, 1010 (C=0 mazonnouc, ester).	6.90–7.70 (m, 20H, Ar—H + 2-methylidene-H + 2NH ₂).
Sa	3448 (NH), 2924 (CH-aliph.), 1692 (C=O thiazo-linone, ester).	1.12 (s, 3H, CH ₃), 2.26 (t, 3H, CH ₃ -ester, J = 7.6 Hz), 4.11 (q, 2H, CH ₂ -ester, J = 6.4 Hz), 5.63 (s, 1H, $\frac{1}{2}$ (s, 3H, $\frac{1}{2}$ (s, 3H, $\frac{1}{2}$ (s, 3H, $\frac{1}{2}$ (s, 3H, $\frac{1}{2}$ (s) $\frac{1}{2}$ (d) $\frac{1}{2}$ (e) $\frac{1}{2}$ (f) $\frac{1}{2}$ (s) $\frac{1}{2}$ (f)
5b	3166 (NH), 2978 (CH-aliph.), 1700 (C=O thiazo- linone, ester).	methylidene-H), 7.11 (d, 4H, Ar ⁻ H, J = 6 Hz), 7.33 (s, 1H benzylidene-H), 12.01 (s, 1H, NH). 1.19 (t, 3H, CH ₃ -ester, J = 7 Hz), 3.84 (s, 3H, OCH ₃), 4.13 (q, 2H, CH ₂ -ester, J = 8.4 Hz), 5.65 (s, 1H,
ú	3166 (NH) 2900 (CH-alinh) 1692 (C=O thiszo-linone exter)	methylidene-H), 7.06 (d, 4H, Ar-H, J = 8.2 Hz), 7.62 (s, 2H, benzylidene-H), 12.01 (br, 1H, NH).
s	5100 (141), 2700 (C11-anphi.), 1022 (C. C. unaco-inone, catal).	methylidene-H), 7.23- (d, 4H, Ar—H, J = 8.4 Hz), 8.45 (s, 2H, benzylidene-H), 12.01 (s, 1H, NH).
9	3468, 3410 (NH ₂), 2188 (C \equiv N), 1694 (C \equiv O thiazol- inone, ester).	$1.04, 1.22 (2t, 6H, 2CH_3-ester, J = 7.2 Hz), 3.03, 3.11 (s, 12H, 2N(CH_3)_2), 4.05, 4.49 (2q, 4H, 2CH_2-ester, J = 1.04, 1.22)$
ı	THE STATE OF THE S	6.6 Hz), 5.57, 5.62 (2s, 2H, 2 pyridine-H), 6.87–7.87 (m, 20H, Ar—H + methine-H + 2NH).
/a	3432, 3220 (NH ₂), 2228 (C \equiv N), 1686, 1634 (C \equiv O thiazolinone,	1.0/ (t, 5H, CH ₃), 2.6 (s, 3H, CH ₃ -ester, J = 4.8 Hz), 5./5 (s, 5H, OCH ₃), 4.12 (q, 2H, CH ₂ -ester, J = 5 Hz), 4.44 (s 1H avaridine-H) 7.18 7.40 (m 9H $\Delta r = 1.00$ Hz) 7.56 (s 1H marhine-H) 9.01 (hr 1H OH)
J.	3402, 3296 (NH2), 2194 (C=N), 1708, 1644 (C=O thiazolinone,	1.03 (t, 3H, CH ₃ -ester, J = 7 Hz), 2.27 (s, 3H, CH ₃), 3.89 (s, 3H, OCH ₃), 4.12 (q, 2H, CH ₂ -ester, J = 7.2 Hz),
	ester).	4.42 (s, 1H, pyridine-H), 7.13, 7.62 (m, 10H, Ar-H + NH ₂), 7.69 (s, 1H, methine-H).
7c	3308, 3212 (NH ₂), 2216 (C \equiv N), 1692, 1644 (C \equiv O thiazolinone,	1.05 (t, 3H, CH ₃ -ester, J = 48 Hz), 3.72, 3.84 (2s, 6H, 20CH ₃), 4.03 (s, 1H, pyridine-H), 4.06 (q, 2H,
	ester).	CH_2 -ester, $J = 4.6 \text{ Hz}$), $6.60-7.69 \text{ (m, 10H, Ar-H + NH}_2 + \text{methine-H})$, $9.01 \text{ (br, 1H, OH)}$.
7d	3378, 3282 (NH ₂), 2198 (C \equiv N), 1678, 1646 (C \equiv O thiazolinone,	1.03 (t, 3H, CH ₃ -ester, J = 6.2 Hz), 3.31 (s, 6H, N(CH ₃) ₂), 3.37 (s, 3H, OCH ₃), 4.00 (q, 2H, CH ₂ -ester, J = 6
•	ester).	Hz), 4.50 (s, 1H, pyridine-H), 7.29–7.74 (m, 11H, Ar $=$ H + NH ₂ + methine-H).
•	5272, 5152 (ZINT), 1000 (C—O III azoliiloire, allilue)	3.70 (s, Zn, Cn2-unazonnone), 3.76 (s, 1n, Cn), 7.20-7.03 (u, 4n, Al-n, J = 1.6 nz), 3.92 (s, 1n, 1n), 11.50 (br. 1H. NH).
10	3312 (NH), 1688, 1670 (C=O thiazolinone, amide)	6.90-7.86 (m, 13H, Ar—H + 2H-methine-H), 8.91 (br. 1H, NH).
11	3360 (NH), 1668 (C=0, amide).	7.14, 7.63 (m, 13H, Ar $-$ H + pyrazole-H), 10.33, 10.51 (2s, 2H, 2NH).
12	3050, 3230 (NH), 1688, 1662 (C=O thiazolinone, amide).	
16a	3456,3180 (NH,OH), 2182 (C≡N), 1710, 1648 (C=O thiazolinone,	3.80, 3.38 (2s, 6H, 2OCH ₃), 4.98 (s, 1H, pyri-dine-H), 6.85–7.67 (m, 13H, Ar—H + methine-H), 9.42 (s, 1H,
!	amide).	NH), 11.90 (hump, 1H, OH).
16b	3475, 3316 (NH, OH), 2184 (C≡N), 1714, 1650 (C=O thiazolinone,	5.05 (s, 1H, pyridine-H), 7.26–7.71 (m, 13H, Ar-H + methine-H), 9.49 (s, 1H, NH), 12.10 (br, 1H, OH).
	amide)	

Table II Physical and analytical data for the synthesized compounds

Compd.	Mp (°C)	Yield (%)	Solvent cryst.	Molecular formula (Mol. Wt.)	Elemental analyses Calcd./found		
					C%	Н%	N%
3a	211–213	67	EtOH	C ₂₂ H ₂₀ N ₂ O ₆ S ₂ (472)	55.93	4.23	5.93
					55.95	4.25	5.97
3b	191–193	72	EtOH	$C_{28}H_{24}N_2O_7S_2$ (564)	59.57	4.25	4.96
					59.55	4.20	4.96
4a	271–273	69	EtOH	$C_{42}H_{30}N_6Cl_2O_6S_2$ (849)	59.36	3.53	9.89
					59.46	3.50	9.90
4b	281–283	70	EtOH	$C_{44}H_{36}N_6O_8S_2$ (840)	62.85	4.28	10.00
					62.87	4.30	10.05
4c	225–227	74	EtOH	$C_{48}H_{34}N_6Cl_2O_7S_2$ (941)	61.21	3.61	8.92
					61.23	3.61	8.91
4d	235–237	71	EtOH	$C_{48}H_{32}N_6Cl_4O_7S_2$ (1010)	57.02	3.16	8.31
					57.03	3.16	8.33
5a	180–182	65	EtOH	$C_{15}H_{15}NO_3S$ (289)	62.28	5.19	4.84
					62.21	5.20	4.85
5b	195–197	68	EtOH	$C_{15}H_{15}NO_4S$ (305)	59.01	4.91	4.59
_					59.00	4.50	4.60
5c	192–194	69	EtOH	$C_{16}H_{18}N_2O_3S$ (318)	60.37	5.66	8.80
_	251 252		F. 611	a a a	60.40	5.65	8.81
6	271–273	82	EtOH	$C_{52}H_{46}N_8O_7S_2$ (958)	65.13	4.80	11.69
_	225 225	7.4	E.OH	G H N O G (400)	65.10	4.70	11.60
7a	225–227	74	EtOH	$C_{26}H_{23}N_3O_5S$ (489)	61.34	4.70	8.58
	220, 220	70	E.OH	G H N O G (472)	61.30	4.71	8.59
7b	228–230	70	EtOH	$C_{26}H_{23}N_3O_4S$ (473)	65.46	4.86	8.87
-	041 042	65	E.OH	G H N O C (505)	65.46	4.85	8.86
7c	241–243	65	EtOH	$C_{26}H_{23}N_3O_6S$ (505)	61.78 61.78	4.55 4.55	8.31 8.33
7d	235–237	72	EtOH	C II N O S (502)	64.54	5.17	11.15
/u	233–231	12	EIOH	$C_{27}H_{26}N_4O_4S$ (502)	64.53	5.17	11.15
9	235–237	72	Bz*	C ₁₁ H ₁₉ N ₂ ClO ₂ S (268.5)	49.16	7.07	10.42
,	233–237	12	DZ	C[[11]91\2ClO2S (208.5)	49.16	7.06	10.42
10	292-294	79	EtOH/Bz	C ₂₅ H ₁₅ N ₂ Cl ₃ O ₂ S (512.5)	58.53	2.92	5.46
10	2)2-2)4	1)	LtOII/DZ	C251115112C13O2S (312.3)	58.93	2.92	5.76
11	>300	71	EtOH/Bz	C ₂₅ H ₁₆ N ₄ Cl ₃ OS (525.5)	57.08	3.04	10.05
	> 500	, 1	LIGITIBE	025111011401505 (323.3)	57.11	3.01	10.00
12	281-283	76	EtOH/Bz	C ₁₉ H ₁₂ N ₃ ClO ₃ S (397.5)	57.35	3.01	10.56
	201 200	, 0	2.012,22	-13121.301030 (071.0)	57.35	2.97	10.60
16a	291-293	73	EtOH	C ₃₀ H ₂₂ N ₃ ClO ₃ S (571.5)	62.99	3.84	7.34
				- 5022- 5 6 50 (6 , 1.0)	62.95	3.86	7.37
16b	295-297	71	EtOH	C ₂₈ H ₁₆ N ₃ Cl ₃ O ₃ S (580.5)	57.88	2.75	7.23
		•		20 10 3 - 3 - 3 - (- 0010)	57.93	2.77	7.25

^{*}Bz = benzene.

2-N-(4-Chlorophenyl)acetamido-4-oxo-4,5-dihydro-1,3-thiazole (9)

To a solution of cyanoacetanilide derivative 8 (0.01 mol) in acetic acid (30 mL), thioglycolic acid (0.01 mol) was added. The reaction mixture was heated under reflux for 3 h. The solid product formed was collected by filtration.

2-[5-(4-Chlorobenzylidene)-4-oxo-4,5-dihydro-1,3-thiazolo-2-yl]1,3-N-bis(4-chlorophenyl)acrylamide (10)

To a solution of 9 (0.01 mol) in dioxane (30 mL) containing a catalytic amount of piperidine (0.5 mL), p-chlorobenzaldehyde (0.01 mol) was added. The reaction mixture was refluxed for 3 h. The solid product formed was collected by filtration.

1,3-N-Bis(4-chlorophenyl)-2-[3-(4-chlorophenyl)-1H-pyrazolo-[3,4-d]thiazol-5-yl]acrylamide (11)

Equimolar amounts of 4-thiazolinone derivative **10** (0.01 mol) and hydrazine hydrate (0.01 mol) in dioxane (30 mL) was refluxed for 6 h. The solid product formed was collected by filtration.

N-(4-Chlorophenyl)-2-[4-oxo-5-(2-oxo-1,2-dihydro-indol-3-ylidene)thiazolidine]acetamide (12)

To a solution of 4-thiaozlidinone **9** (0.01 mol) in dioxane (30 mL) containing a catalytic amount of piperidine (0.5 mL), isatin (0.01 mol) was added. The reaction mixture was heated under reflux for 6 h. The solid product formed was collected by filtration.

2-(Arylmethylidene)-7-aryl-6-cyano-5-hydroxy-3-oxo-2,3-dihydro-7H-thiazolo[3,2-a]pyridine-8-carboxylic Acid (4-Chloro-phenyl) Amide (16a,b)

To a solution of compound **9** (0.01 mol) in dioxane (30 mL) containing a catalytic amount of piperidine (0.5 mL), α -ethoxy-carbonylcinnamonitriles (0.01 mol) was added. The reaction mixture was heated under reflux for 6 h. The solid product formed was collected by filtration.

REFERENCES

- 1. H. N. Liu, Z. C. Li, and T. Anlhonsen, *Molecules*, **5**, 1055 (2000).
- 2. M. Winn, E. B. Reilly, and G. Liu, J. Med. Chem., 44, 4393 (2001).
- 3. M. A. A. Elneairy, M. Abdel Rahman, and A. M. Hammad, J. Chem. Res. (S), 684 (1998).
- 4. S. A. Shiba, A. A. El-Khamry, M. E. Shaban, and K. S. Atia, *Pharmazie*, **52**, 189 (1997).
- 5. L. Sun, N. Tran, and F. Tang, J. Med. Chem., 41, 2588 (1998).
- 6. N. C. Desai, Indian J. Chem., 32, 343 (1993).
- 7. M. E. A. Zaki, *Molecules*, **3**, 71 (1998).
- 8. T. I. Emary, A. M. K. El-Dean, and H. S. El-Kashef, *IL Farmaco*, **53**(6), 383 (1998).
- 9. S. Kamba, K. S. Saito, and H. Kishi, Synthesis, 839 (1977).
- 10. J. J. Chen and I. J. Wang, Dyes Pigm., 30, 173 (1996).
- 11. A. Kruaze, J. Popelis, and G. Duburs, *Tetrahedron*, **54**, 9161 (1998).
- 12. M. S. Al-Thebeiti, IL Farmaco, 55, 109 (2000).
- 13. M. S. A. El-Gaby, *Phosphorous, Sulfur, and Silicon*, **156**, 157 (2000).
- 14. G. A. M. El-Hag Ali, Phosphorus, Sulfur, and Silicon, 178, 711 (2003).
- G. A. M. El-Hag Ali, A. Khalil, A. H. A. Ahmed, and M. S. A. El-Gaby, *Acta. Chim. Slov.*, 49, 365 (2002).
- 16. M. E. Azab, G. A. M. El-Hag Ali, and Ashraf H. F. Abd El-Wahab, Acta Pharm., 53, 213 (2003).

- 17. A. H. El-Maghraby, G. A. M. El-Hag Ali, A. H. A. Ahmed, and M. S. A. El-Gaby, *Phosphorus*, *Sulfur, and Silicon*, **177**, 293 (2002).
- M. S. A. El-Gaby, M. M. Khafagy, G. A. M. El-Hag Ali, H. A. Eyada, A. A. El-Maghraby, and M. H. Helal, *Phosphorus, Sulfur, Silicon*, 178, 1681 (2003).
- 19. R. Q. Lamphon, M. S. A. El-Gaby, M. M. Khafagy, G. A. M. El-Hag Ali, A. A. El-Maghraby, H. A. Eyada, and M. H. Helal, *Phosphorus, Sulfur, and Silicon*, **179**, 1279 (2004).
- G. A. M. El-Hag Ali, R. Q. Lamphon, A. Khalil, and A. El-Maghraby, *Phosphorus, Sulfur, and Silicon*, 180, 1909 (2005).
- M. H. Elnagdi, M. A. E. Khalifa, M. K. A. Ibrahime, and M. R. H. Elmoghayar, *J. Heterocycl. Chem.*, 18, 877 (1981).